
MICS
Release 0.2.0

Feb 03, 2019

Contents

1 Overview 1
1.1 Installation . 1
1.2 Documentation . 1
1.3 Development . 1

2 Installation 3

3 Usage 5

4 Python API 7
4.1 sample . 7
4.2 pooledsample . 8
4.3 mixture . 9
4.4 MICS . 10
4.5 MBAR . 10

5 Contributing 11
5.1 Bug reports . 11
5.2 Documentation improvements . 11
5.3 Feature requests and feedback . 11
5.4 Development . 12

6 Authors 13

7 Changelog 15

8 Glossary 17

9 Bibliography 19

10 Indices and tables 21

Bibliography 23

i

ii

CHAPTER 1

Overview

Mixtures of Independently Collected Samples

• Free software: MIT license

1.1 Installation

pip install mics

1.2 Documentation

https://mics.readthedocs.io/

1.3 Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Windows
set PYTEST_ADDOPTS=--cov-append
tox

Other
PYTEST_ADDOPTS=--cov-append tox

1

https://mics.readthedocs.io/

MICS, Release 0.2.0

2 Chapter 1. Overview

CHAPTER 2

Installation

At the command line:

pip install mics

3

MICS, Release 0.2.0

4 Chapter 2. Installation

CHAPTER 3

Usage

To use MICS in a project:

import mics

5

MICS, Release 0.2.0

6 Chapter 3. Usage

CHAPTER 4

Python API

4.1 sample

class mics.sample(dataset, potential, acfun=None, batchsize=None, **constants)
A sample of configurations distributed according to a PDF proportional to exp(-u(x)). Each configuration
x is represented by a set of collective variables from which one can evaluate the reduced potential u(x), as well
as other properties of interest.

Parameters

• dataset (pandas.DataFrame) – A data frame whose column names are collective variables
used to represent the sampled comfigurations. The rows must contain a time series of these
variables, obtained by simulating the system at a state with known reduced potential.

• potential (str) – A mathematical expression defining the reduced potential of the simulated
state. This must be a function of the column names in dataset and can also depend on
external parameters passed as keyword arguments (see below).

• acfun (str, optional, default=potential) – A mathematical expression defining a property to
be used for OBM autocorrelation analysis and effective sample size calculation. It must be a
function of the column names in dataset and can also depend on external parameters passed
as keyword arguments (see below).

• batchsize (int, optional, default=sqrt(len(dataset))) – The size of each batch (window) to
be used in the OBM analysis. If omitted, then the batch size will be the integer part of the
square root of the sample size.

• **constants (keyword arguments) – A set of keyword arguments passed as name=value,
aimed to define external parameter values for the evaluation of the mathematical expressions
in potential and acfun. They can also be used as labels to distinguish samples from each
other, in this case not necessary being present in the mentioned expressions.

averaging(properties, combinations={}, **constants)
Computes averages and uncertainties of configurational properties. In addition, computes combinations
among these averages while automatically handling uncertainty propagation.

7

MICS, Release 0.2.0

Parameters

• properties (dict(str: str)) – A dictionary associating names to mathematical expressions.
This is used to define functions of the collective variables included in the samples. Then,
averages of these functions will be evaluated at all sampled states, along with their uncer-
tainties. The expressions might also depend on parameters passed as keyword arguments
(see below).

• combinations (dict(str: str), optional, default={}) – A dictionary associating names to
mathematical expressions. This is used to define functions of the names passed as keys
in the properties dictionary. The expressions might also depend on parameters passed as
keyword arguments (see below).

• **constants (optional keyword arguments) – A set of arguments passed as name=value,
used to define parameter values for evaluating the mathematical expressions in both prop-
erties and combinations.

Returns pandas.DataFrame – A data frame containing the computed averages and combina-
tions, as well as their estimated standard errors.

subsampling(integratedACF=True)
Performs inline subsampling based on the statistical inefficiency g of the specified attribute acfun of
sample, aiming at obtaining a sample of IID configurations. Subsampling is done via jumps of vary-
ing sizes around g, so that the sample size decays by a factor of approximately 1/g.

Parameters integratedACF (bool, optional, default=True) – If true, the integrated ACF method
[2] will be used for computing the statistical inefficiency. Otherwise, the OBM method will
be used instead.

Returns sample – Although the subsampling is done inline, the new sample is returned for
chaining purposes.

4.2 pooledsample

class mics.pooledsample(iterable=0)
A python list, but with special extensions for dealing with collections of sample objects. For instance,
subsampling() and averaging() can be called for all samples simultaneously. There is also a method
for creating a mixture object directly from a pooledsample.

averaging(properties, combinations={}, **constants)
Calls averaging() for all samples in the list.

Parameters Same as in sample.averaging().

Returns pandas.DataFrame – A data frame containing the computed averages and combina-
tions, as well as their estimated standard errors, for all samples.

histograms(property=’potential’, bins=100, **constants)

mixture(engine)
Generates a mixture object.

Parameters engine (MICS or MBAR)

Returns mixture

subsampling(integratedACF=True)
Calls subsampling() for all samples in the list.

Parameters Same as in sample.subsampling().

8 Chapter 4. Python API

MICS, Release 0.2.0

Returns pooledsample – Although the subsampling is done in line, the new pooled sample
is returned for chaining purposes.

4.3 mixture

class mics.mixture(samples, engine)
A mixture of independently collected samples (MICS).

Parameters

• samples (pooledsample or list(sample)) – A list of samples.

• engine (MICS or MBAR) – A method for mixture-model analysis.

free_energies(reference=0)
Computes the free energies of all sampled states relative to a given reference state, as well as their standard
errors.

Parameters reference (int, optional, default=0) – Specifies which sampled state will be consid-
ered as a reference for computing free-energy differences.

Returns pandas.DataFrame – A data frame containing the free-energy differences and their
computed standard errors for all sampled states.

reweighting(potential, properties={}, derivatives={}, combinations={}, conditions={}, reference=0,
**constants)

Computes averages of specified properties at target states defined by a given reduced potential function
with distinct passed parameter values, as well as the free energies of such states with respect to a sampled
reference state. Also, computes derivatives of these averages and free energies with respect to the men-
tioned parameters. In addition, evaluates combinations of free energies, averages, and derivatives. In all
cases, uncertainty propagation is handled automatically by means of the delta method.

Parameters

• potential (str) – A mathematical expression defining the reduced potential of the target
states. It might depend on the collective variables of the mixture samples, as well as
on external parameters whose values will be passed via conditions or constants, such as
explained below.

• properties (dict(str: str), optional, default={}) – A dictionary associating names to math-
ematical expressions, thus defining a set of properties whose averages must be evaluated
at the target states. If it is omitted, then only the relative free energies of the target states
will be evaluated. The expressions might depend on the same collective variables and
parameters mentioned above for potential.

• derivatives (dict(str: (str, str)), optional, default={}) – A dictionary associating names to
(property, parameter) pairs, thus specifying derivatives of average properties at the target
states or relative free energies of these states with respect to external parameters. For each
pair, property must be either “f” (for free energy) or a name defined in properties, while
parameter must be an external parameter such as described above for potential.

• combinations (dict(str: str), optional, default={}) – A dictionary associating names to
mathematical expressions, thus defining combinations among average properties at the
target states, the relative free energies of these states, and their derivatives with respect
to external parameters. The expressions might depend on “f” (for free energy) or on the
names defined in properties, as well as on external parameters such as described above for
potential.

4.3. mixture 9

MICS, Release 0.2.0

• conditions (pandas.DataFrame or dict, optional, default={}) – A data frame whose col-
umn names are external parameters present in mathematical expressions specified in argu-
ments potential, properties, and combinations. The rows of the data frame contain sets of
values of these parameters, in such as way that the reweighting is carried out for every sin-
gle set. This is a way of defining multiple target states from a single potential expression.
The same information can be passed as a dictionary associating names to lists of numerical
values, provided that all lists are equally sized. If it is empty, then a unique target state will
be considered and all external parameters in potential, if any, must be passed as keyword
arguments.

• reference (int, optional, default=0) – The index of a sampled state to be considered as a
reference for computing relative free energies.

• **constants (keyword arguments) – A set of keyword arguments passed as name=value,
aimed to define external parameter values for the evaluation of mathematical expressions.
These values will be repeated at all target states specified via potential and conditions.

Returns pandas.DataFrame – A data frame containing the computed quantities, along with their
estimated uncertainties, at all target states specified via potential and conditions.

4.4 MICS

class mics.MICS(composition=None, tol=1e-12)
Machinery for mixture-model analysis using the MICS method.

Parameters

• composition (list(Number), optional, default = None) – A predefined composition for the
mixture. If this is None, then the prior probability of each state will be considered as pro-
portional to the effective size of the corresponding sample.

• tol (real, optional, default = 1e-12) – A tolerance for determining convergence of the self-
consistent solution of the MICS equations.

4.5 MBAR

class mics.MBAR(tol=1e-12)
Machinery for mixture-model analysis using the MBAR method [1].

Parameters tol (real, optional, default = 1e-12) – A tolerance for determining convergence of the
self-consistent solution of the MBAR equations.

10 Chapter 4. Python API

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.2 Documentation improvements

MICS could always use more documentation, whether as part of the official MICS docs, in docstrings, or even on the
web in blog posts, articles, and such.

5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/craabreu/mics/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

11

https://github.com/craabreu/mics/issues
https://github.com/craabreu/mics/issues

MICS, Release 0.2.0

5.4 Development

To set up mics for local development:

1. Fork mics (look for the “Fork” button).

2. Clone your fork locally:

git clone git@github.com:your_name_here/mics.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

5.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox)1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

5.4.2 Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though . . .

12 Chapter 5. Contributing

https://github.com/craabreu/mics
http://tox.readthedocs.io/en/latest/install.html
https://travis-ci.org/craabreu/mics/pull_requests

CHAPTER 6

Authors

• Charlles R. A. Abreu - http://atoms.peq.coppe.ufrj.br

13

http://atoms.peq.coppe.ufrj.br

MICS, Release 0.2.0

14 Chapter 6. Authors

CHAPTER 7

Changelog

0.2.0 (2018-05-09)

• Implementation of classes sample, pool, mixture, MICS, and MBAR.

0.1.0 (2017-10-11)

• Experimental release.

15

MICS, Release 0.2.0

16 Chapter 7. Changelog

CHAPTER 8

Glossary

ACF Autocorrelation function

IID Independent and identically distributed

OBM Overlapping batch mean

PDF Probability density function

17

MICS, Release 0.2.0

18 Chapter 8. Glossary

CHAPTER 9

Bibliography

19

MICS, Release 0.2.0

20 Chapter 9. Bibliography

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

21

MICS, Release 0.2.0

22 Chapter 10. Indices and tables

Bibliography

[1] Michael R. Shirts and John D. Chodera. Statistically optimal analysis of samples from multiple equilibrium states.
The Journal of Chemical Physics, 129(12):124105, September 2008. doi:10.1063/1.2978177.

[2] John D. Chodera, William C. Swope, Jed W. Pitera, Chaok Seok, and Ken A. Dill. Use of the Weighted Histogram
Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations. Journal of Chemical Theory
and Computation, 3(1):26–41, January 2007. doi:10.1021/ct0502864.

23

https://doi.org/10.1063/1.2978177
https://doi.org/10.1021/ct0502864

MICS, Release 0.2.0

24 Bibliography

Index

A
ACF, 17
averaging() (mics.pooledsample method), 8
averaging() (mics.sample method), 7

F
free_energies() (mics.mixture method), 9

H
histograms() (mics.pooledsample method), 8

I
IID, 17

M
MBAR (class in mics), 10
MICS (class in mics), 10
mixture (class in mics), 9
mixture() (mics.pooledsample method), 8

O
OBM, 17

P
PDF, 17
pooledsample (class in mics), 8

R
reweighting() (mics.mixture method), 9

S
sample (class in mics), 7
subsampling() (mics.pooledsample method), 8
subsampling() (mics.sample method), 8

25

	Overview
	Installation
	Documentation
	Development

	Installation
	Usage
	Python API
	sample
	pooledsample
	mixture
	MICS
	MBAR

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	Glossary
	Bibliography
	Indices and tables
	Bibliography

